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Nonextensive maximum-entropy-based formalism for data subset selection
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A method for data subset selection, which is based on theq5
1
2 maximum information measure formalism,

is proposed. The method evolves iteratively by selecting, at each iteration, the measure yielding aq5
1
2

distribution capable of making predictions minimizing the Euclidean distance to the available data.

DOI: 10.1103/PhysRevE.65.011113 PACS number~s!: 05.20.2y, 02.50.Tt, 02.30.Zz, 07.05.Kf
m

n

g
o

se
el
ow
te
rib
t
,

O
s
w
ta
h

-

h-

c
o

th
-
n
c.
r

om

n

is-
-

n-

s

e

I. INTRODUCTION

We have shown in previous efforts on the maximu
entropy-based~MaxEnt! @1–3# that, in situations in which a
density distribution is to be determined from measureme
collected as a function of a variable parameter,only a subset
of them is normallyrelevantto be employed for constrainin
the corresponding optimization process. This is true,
course, in the absence of noise~random errors!. Otherwise,
redundancy does yield the desired effect of reducing noi

In @1,2# a MaxEnt formalism is advanced that selects r
evant data from an available set. Such methodology, h
ever, is marred by the limitation of assuming the selec
data to be noiseless, in the sense that the resultant dist
tion is forced toexactly account for them. Other MaxEn
methods@4–10#, which are not affected by this limitation
fail to provide information as to justwhich the relevant data
are.

This paper aims at achieving the best of both worlds.
the one hand, we wish to use all the available data so a
determine the density distribution. On the other hand,
wish to be in a position to identify a subset of relevant da
The framework we are going to propose for achieving suc
goal is based on the nonextensive informationq measure
advanced by Tsallis@11–18#.

We consider the particular instanceq5 1
2 . Such a case

gives rise to a generalizedp1/2 distribution, which has been
analyzed in@19#. The physical significance of this distribu
tion is illustrated in Boghosian’s work@20#, while some
mathematical applications are reported in@21,22#. Here we
use thep1/2 distribution in order to construct a sound mat
ematical scheme for data subset selection.

The paper is organized as follows. In Sec. II we introdu
the notation, together with some considerations on the n
extensive maximum information measure distribution for
case of interest, i.e.,q5 1

2 . In Sec. III we discuss the estima
tion of such a distribution from a given set of measureme
and a~assumed to be known! relevant subset of them. In Se
IV a selection criterion and an iterative algorithm for dete
mining such a subset of relevant data is proposed. S
conclusions are drawn in Sec. V.

II. PRELIMINARY CONSIDERATIONS

Consider that we are given theM pieces of data
f 1

o , f 2
o , . . . ,f i

o , . . . f M
o , each of which is the expectatio
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value~EV! of a random variable that, for a suitable set ofN
states labeled asn51, . . . ,N, takes the valuesf i ,n ; n
51, . . . ,N. The EVs are computed using a generalized d
tribution pn

1/2 ; n51, . . . ,N. Thus, the data model is ex
pressed in terms ofM equations of the form

f i
o5 (

n51

N

pn
1/2f i ,n , i 51, . . . ,M , ~1!

that, adopting a Dirac’s vectorial notation, are recast as

u f o&5Âup1/2&, ~2!

whereup1/2& is represented in terms of thestandard basisun&
n51, . . . ,N of RN

up1/2&5 (
n51

N

un&^nup1/2&5 (
n51

N

pn
1/2un&, ~3!

while the data vectoru f o& is represented in terms of the sta
dard basisu i &; i 51, . . . ,M of RM

u f o&5(
i 51

M

u i &^ i u f o&5(
i 51

M

f i
ou i &. ~4!

The operatorÂ:RN→RM is given by the matrix element

^ i uÂun&5 f i ,n , i 51, . . . ,M , n51, . . .N. Thus, by defining
vectorsu f n&PRM in such a way that̂i u f n&5 f i ,n the operator
Â is expressed as

Â5 (
n51

N

u f n&^nu. ~5!

It is shown in@21# that using this notation the nonextensiv
MaxEnt q distribution is of the form

pj
q5z@12~12q!^ j uÂ†ul&#q/(12q); ~ j 51, . . . ,N!,

qPR, ~6!

where Â† stands for the adjoint ofÂ, z is a normalization
constant, andul& is a vector inR M whose entries are the
Lagrange multipliersl i , i 51, . . . ,M accounting for M
©2001 The American Physical Society13-1
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given constraints. For the particular value ofq we are here
considering, i.e.,q5 1

2 , the corresponding distribution can b
recast in the form@19,21#

up1/2&5uz&1Â†ul&, ~7!

whereuz&5(n51
N ^nuz&un&5(n51

N zun& is the vectorial repre-
sentation of the normalization constantz. As discussed in
@19#, if our information consists of independent pieces
data then rank(Â)5M , the operatorÂÂ† has an inverse, and
the unique Lagrange multiplier vector~which determines
up1/2&) is obtained from Eq.~2! as

ul&5~ÂÂ†!21u f o&2~ÂÂ†!21Âuz&. ~8!

On the other hand, if the pieces of data we have gathered
not independent, then rank(Â),M , the operatorÂÂ† has no
inverse, and the vectorul& is not unique. However, as dis
cussed in@21#, one can still use the pseudoinverse of t
operatorÂÂ† in order to obtain an appropriate vectorul&,
without affecting the uniqueness of theup1/2& distribution.
Proceeding in such a way, however, we are unable to dis
just which of theM data equations of our model conta
relevant information. At this point it is necessary to spec
the precise meaning that we would like the term ‘‘relevan
to be endowed with in the present context.

Definition. Given a set ofM empirical expectation value
@and theM associated equations of the form~1!#, we refer to
a subset ofK<M of these equations as being relevant, if t
K equations provide us with independent constraints
give rise to aup1/2& distribution able to correctly predict th
remaining~available! (M2K) data.

The scheme outlined above associates to each equati
the system given in Eqs.~1! and~2!: ~i! a particular subindex
(1< i<M ), ~ii ! a particular row belonging to the matrix rep
resentation of the operatorÂ ~i.e., a particular component o
the vectorsu f n&), ~iii ! the corresponding component ofu f o&,
and ~iv! a Lagrange multiplier. Nevertheless, ifM2K of
those equations are not really relevant as constraints, one
regard them as giving rise to components of the vectorul&
that have a null value. The central idea of the theoret
framework to be advanced here is that of appropriately us
such a fact. We do so by recourse to the construction o
sparse Lagrange multiplier vector, whose nonzero ent
identify a subset of relevant data.

III. ESTIMATING THE LAGRANGE MULTIPLIERS
FROM NOISY DATA

Let us suppose that we are able to identifyK relevant
equations and let us relabel the corresponding subindexe
l k ; k51, . . . ,K. Since, by hypothesis,̂i ul&50 for iÞ l k ,
Eq. ~7!, that yields theq5 1

2 distribution, becomes

up1/2&5uz&1 (
k51

K

Â†u l k&^ l kul&. ~9!
01111
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The constantz, which determinesuz&, is fixed by normaliza-
tion. Here we will adopt the criterion advanced in Ref.@20#,
and require that(n51pn

1/251. Consequently, one easily ob
tains

z5
1

N
2

1

N (
n51

N

(
k51

K

^nuÂ†u l k&^ l kul&

5
1

N
2

1

N (
n51

N

(
k51

K

^ f nu l k&^ l kul&, ~10!

so that, by introducing the vector

ug&5 (
n51

N

u f n&[ (
n51

N

Âun& ~11!

we can write

z5
1

N
2

1

N (
k51

K

^gu l k&^ l kul&. ~12!

Hence,

up1/2&5S 1

N
2

1

N (
k51

K

^gu l k&^ l kul& D (
n51

N

un&

1 (
k51

K

Â†u l k&^ l kul&. ~13!

If the K pieces of dataf l k
o , k51, . . .K, that we are consid-

ering were to be known without uncertainty, we could u
them to straightforwardly determine the ,K Lagrange multi-
pliers ^ l kul&, k51, . . .k from the corresponding ,K equa-
tions, as explained in Sec. II. Moreover, since we are wo
ing under the hypothesis that the remaining equations of
original system~1! are irrelevant, we would be in a positio
to accurately predict the complete data vector in the fash

u f o&[u f p&5Âup1/2&

5
ug&
N

2
1

N (
k51

K

ug&^gu l k&^ l kul&

1 (
k51

K

ÂÂ†u l k&^ l kul&

5
ug&
N

2
1

N (
k51

K

ug&^gu l k&^ l kul&

1 (
n51

N

(
k51

K

u f n&^ f nu l k&^ l kul&. ~14!

Unfortunately, data are never known without some unc
tainty and, therefore, the predictionu f p& will match the real
data u f o& only up to some error. Hence, by determining t
Lagrange multipliers using only theK relevant equations we
would introduce a bias, as a consequence of trying to rep
3-2



t
lte

ue

th

at

th

r
hat

-
e

-

just

m
for-

rac-
ely

ess.
un-

e
omi-
ch
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duce a reduced set of data with precision higher than tha
the remaining available data. We should adopt then an a
native criterion in order to determinêl kul&, k51, . . . ,K.
An equitable one would be to fix these figures as the val
yielding a ~predicted! data vectoru f p& such that one mini-
mizes the distance to the observed vectoru f o&PRM. In order
to discuss how this can be achieved, let us introduce
operatorF̂:RK→RM, as given by

F̂5 (
k51

K

ua l k
&^ l ku, ~15!

where

ua l k
&5 (

n51

N

u f n&^ f nu l k&2
1

N
ug&^gu l k&. ~16!

Thus, we can expressu f p& in the convenient fashion

u f p&5
ug&
N

1uv&, ~17!

with

uv&5F̂ul&. ~18!

Notice that the componentug&/N of u f p& given in Eq.~17! is
the prediction that one would obtain on the basis of no d
i.e., from a constant, uniform distributionpn

1/251/N; n
51, . . . ,N. The other component@the vectoruv& given in
Eq. ~18!# belongs to a subspaceVK5range(F̂), which is gen-
erated by vectorsua l k

&, k51, . . . ,K. The proposition below

shows that the vectoru f p& of the form ~17! that approaches
u f o& in the closest possible way is that obtained by letting
vector uv& to be the orthogonal projection of@ u f o&
2(ug&/N)] onto VK .

Proposition 1. The unique vectoru f p&5(ug&/N)1uv&,
with ug& given in Eq.~11! and uv&PVK , which minimizes
the distanceuuu f o&2u f p&uu is obtained asu f p&5(ug&/N)
1 P̂Vk

@ u f o&2(ug&/N)].

Proof. Let u f 8& be (ug&/N)1uv8&, whereuv8& is an arbi-
trary vector in VK , and let us write it asu f 8&5(ug&/N)
1uv8&2 P̂Vk

@ u f o&2(ug&/N)] 1 P̂Vk
@ u f o&2(ug&/N)]. If we

calculate the squared distanceuuu f o&2u f 8&uu2, since u f o&
2(ug&/N)2 P̂Vk

@ u f o&2(ug&/N)] PVK
' ~whereVK

' denotes the

orthogonal complement ofVK) we have

uuu f o&2u f 8&uu25UUu f o&2
ug&
N

2uv8&1 P̂VkS u f o&2
ug&
N D

2 P̂VkS u f o&2
ug&
N D UU2

5UUP̂VkS u f o&2
ug&
N D2uv8&UU2

1UUu f o2
ug&
N

2 P̂VkS u f o&2
ug&
N D UU2

.

Hence uuu f o&2u f 8&uu is minimized if uv8&[ P̂Vk
@ u f o&
01111
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2(ug&/N)], i.e., u f 8&5(ug&/N)1 P̂Vk
@ u f o&2(ug&/N)]. h

According to this proposition, the Lagrange multiplie
vector ul& must be determined through the requirement t
u f p&5(ug&/N)1 P̂Vk

@ u f o&2(ug&/N)]. Let uD f & be the re-

sidual vectoru f o&2u f p&. Thus,

u f o&5u f p&1uD f &5
ug&
N

1F̂ul&1uD f &, ~19!

so that, in order for u f p& to be (ug&/N)1 P̂Vk
@ u f o&

2(ug&/N)], we should require thatP̂Vk
uD f &50 i.e., uD f &

should be orthogonal to every vectorua l k
&, k51, . . . ,K. We

are thus led to the following equations:

^a l k
u f̃ o&5^a l k

uF̂ul&; k51, . . . ,K, ~20!

with

u f̃ o&5u f o&2
ug&
N

. ~21!

The left-hand side of Eq.~20! happens to give the compo
nents of vectorF̂†u f̃ o&PRK, whereas on the right-hand sid
we find the components of a vectorF̂†F̂ul&PRK. Thus,
these equations can be recast in the form

F̂†u f̃ o&5F̂†F̂ul&. ~22!

Since the operatorF̂†F̂5(n51
K (k51

K u l k&^a l k
ua l n

&^ l nu has an

inverse,ul& is readily obtained as

ul&5~ F̂†F̂ !21F̂†u f̃ o&. ~23!

The predicted vectoru f p& minimizing the distance to the ob
served vectoru f o& is thereby given by

u f p&5
ug&
N

1 P̂Vk
u f̃ o&[

ug&
N

1F̂~ F̂†F̂ !21F̂†u f̃ o&. ~24!

So far we have assumed that the information indicating
which the relevant data are~i.e., the subindexesl k ; k
51, . . . ,K! is somehow accessible to us. This is far fro
being a realistic hypothesis, since, in practice, such an in
mation is normally not available.

As a consequence, for the proposed method to be of p
tical interest, we need to tackle the problem of appropriat
selecting the subindexesl k ; k51, . . . ,K. We propose here
that the selection be made by recourse to an iterative proc
The corresponding procedure, as well as its pertinent fo
dations, constitutes the subject of the next section.

IV. SELECTING RELEVANT DATA

We propose here a ‘‘greedy’’ algorithm for selecting th
above-mentioned subset of relevant equations. The conc
tant selection is not static, but evolves iteratively. At ea
3-3
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iteration, thekth one, say, an approximation to the predict
vector u f k

p& is constructed that improves upon the previo
one by choosing a new vectorua l k

&, and, consequently, en

larging the dimension of the subspaceVk5range(F̂k). Here
the subscriptk indicates that at iterationkth the operatorF̂
defined in Eq.~15! is constructed out ofk vectorsua l j

&, j

51, . . . ,k. Starting with an initial subspaceV1 spanned by a
single vectorua l 1

& we build a sequence of subspacesVk by

consideringVk115Vk% ua l k11
&. As already discussed, give

Vk11, we wish the componentuv& of the predicted vector to
be the orthogonal projection ofu f̃ o& onto the subspaceVk11,
so as to minimize the distance between such vectors. N
sinceVk115Vk% ua l k11

&, by fixing Vk in the previous itera-

tion ~the kth one! we aim at selecting the vectorua l k11
& in

such a way that the distanceuuu f̃ o&2u f p&uu2 is minimized.
According to the discussion of the preceding sect
this entails to look for the vectorua l k11

& such that

uuu f̃ o&2F̂k11(F̂k11
† F̂k11)21F̂k11

† u f̃ o&uu2 is minimal, which at
first sight seems to demand a computationally expensive
fort. However, the computational burden can be enormou
reduced by making use of ~i! the fact that
F̂k11(F̂k11

† F̂k11)21F̂k11
† u f̃ o&5 P̂Vk11

u f̃ o&, and ~ii ! introduc-

ing an auxiliary representation for the operatorP̂Vk11
. The

following propositions are in order.
Proposition 2. The vectorsuck&, k51, . . . ,K defined as

uck&5ua l k
&2 P̂Vk21

ua l k
&, ~25!

are either zero or mutually orthogonal.
Proof. The proof stems from the fact that, fork<n,

P̂Vk21
P̂Vn21

5 P̂Vk21
. Thus, fork<n, one has

^ckucn&5^a l k
ua l n

&2^a l k
uP̂Vn21

ua l n
&2^a l k

uP̂Vk21
ua l n

&

1^a l k
uP̂Vk21

P̂Vn21
ua l n

&

5^a l k
ua l n

&2^a l k
uP̂Vn21

ua l n
& ~26!
01111
s
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n
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and, since fork<n21, P̂Vn21
ua l k

&5ua l k
&, it follows that,

for k,n, ^ckucn&50. Moreover, the propertŷ ckucn&
5^cnuck& ~where^cnuck& indicates the complex conjugat
of ^cnuck&) allows one to extend the relation^ckucn&50 to
all kÞn. For n5k we have ^ckuck&5^akuak&
2^akuP̂Vk21

uak& so that, since forua l k
&PVk21 it holds that

P̂Vk21
uak&5uak&, every uak&PVk21 gives rise to a vector

uck& of zero norm. Otherwise,̂ckucn&5dk,nuuuck&uu2, which
expresses the orthogonality condition.h

Corollary 1. The dimension of the subspaceSspanned by
the vectorsua i&, i 51, . . . ,M , is equal to the number o
vectors given in Eq.~25! such thatuuuck&uu2Þ0.

Proof. The proof is of an obvious character, sin
uuuck&uu250 implies P̂Vk

ua l k11
&5ua l k11

&, which implies
Vk115Vk% ua l k11

&[Vk . Thus,S[VK , whereK is the num-
ber of nonzero vectorsuck&. h

The above corollary suggests the convenience of reor
ing the vectorsuck& by settingk115k if uuuck&uu250. The
next proposition emphasizes the fact that the reordered f
ily uck&, k51, . . . ,K, provides a representation for the o
thogonal projector operator ontoS.

Proposition 3. Let S[VK be spanned byK linearly inde-
pendent vectorsua l k

&, k51, . . . ,K. The orthogonal projec-

tion operator ontoVK can be expressed as

P̂VK
5 (

k51

K

uc̃k&^c̃ku, ~27!

whereuc̃k&5uck&/uuuck&uu, k51, . . . ,K.
Proof. The proof is achieved by showing the following:

~a! (
k51

K

uc̃k&^c̃kug&5ug&, ;ug&PVK .

~b! (
k51

K

uc̃k&^c̃kug'&50, ;ug'&PVK
' .

~a! follows from the fact that everyug&PVK can be ex-
pressed as a linear combination of theK linearly independent
vectorsua l k

&, k51, . . . ,K, i.e., ug&5(n51
K cl n

ua l n
&. Hence,
(
k51

K

uc̃k&^c̃kug&5 (
k51

K uck&

uuuck&uu2
K ckU(

n51

K

cl n
a l nL

5 (
k51

K uck&

uuuck&uu2
(
n51

K

cl n
^ckucn1 P̂Vn21

a l n
&

5 (
k51

K uck&

uuuck&uu2
(
n51

K

cl n
dn,kuuuck&uu21 (

n51

K

cl n
P̂VK

P̂Vn21
ua l n

&

5 (
n51

K

cl n
~ uc l n

&1 P̂Vn21
ua l n

&)5 (
n51

K

cl n
ua l n

&5ug&. ~28!
3-4
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On the other hand, for allug'&PVK
' it is true that^a l k

ug'&

50, k51, . . . ,K and hence (k51
K uc̃k&^c̃kug'&

5(k51
K uck&^ak2 P̂Vk21

a l k
ug'&/uuuck&uu250, which proves

~b!. h
We are ready now to establish a theorem that allows

the fast implementation of the proposed selection criterio
Theorem 1. The vectorua l k

&, that at iterationk minimizes

the norm of the residual vectoruD f &, is the one yielding the
largest value of the functionalsei , i 51, . . . ,M given by

ei5u^c̃ku f̃ o&u25
bi

di
5

u^a i uD f &u2

^a i ua i&2 (
l 51

k21

u^c̃ l ua i&u2

; bi.0.

~29!

Proof. According to Proposition 1, at iterationk the residue
uD f & of minimum norm should verifyuD f &5u f̃ o&2 P̂Vk

u f̃ o&,

so that uuuD f &uu25uuu f̃ o&uu22^ f̃ ouP̂Vk
u f̃ o&, and, since P̂Vk

5 P̂Vk21
1uc̃k&^c̃ku,

uuuD f &uu25uuu f̃ o&uu22^ f̃ ouP̂Vk21
u f̃ o&2u^c̃ku f̃ o&u2. ~30!

The term^ f̃ ouP̂Vk21
u f̃ o& is fixed in the preceding iteration

Therefore, it follows from Eq.~30! that, at iterationk, the
norm of the residueuD f & is minimized by the functionuc̃k&
for which u^c̃ku f̃ o&u2 takes its largest value. Now, by usin
Eq. ~25!,

u^c̃ku f̃ o&u25
u^a l k

u f̃ o&2^a l k
uP̂Vk

u f̃ o&u2

uuuck&uu2

5
u^a l k

u f̃ o2 P̂Vk
f̃ o&u2

uuuck&uu2
, ~31!

so that we can further write

u^c̃ku f̃ o&u25
u^a l k

uD f &u2

uuuckuu2
5

u^a l k
uD f &u2

^a l k
ua l k

&2 (
l 51

k21

u^c̃ l ua l k
&u2

,

~32!

and the proof is completed. h
Theorem 1 guarantees that the recursive selection of

tors ua l k
& using the criterion~29! provides us, at thekth

iteration, with~i! the vectorua l k
& that minimizes the norm o

the residual error, and~ii ! the Lagrange multiplier vector tha
approximates the available datau f o&PRM in the least square
sense. Indeed, since every vectorua i& exhibiting a linear de-
pendence on the the previously selected ones yields valu
bi anddi equal to 0@cf. Eq.~29!#, according to the restriction
bi.0 all the selected vectors are guaranteed to be line
01111
r
.

c-
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independent. Hence, the operatorF̂†F̂ constructed out of, say
K, selected vectorsua l k

&, k51, . . . ,K does have an inverse
which allows for the computation of the Lagrange multipli
vectorsul&PRK, as in Eq.~23!. Moreover, since each inde
l k , k51, . . . ,K represents an equation of the system~1!
corresponding to a relevant piece of data, by selecting a s
set of vectorsua l k

&, k51, . . . ,K we are able to identify the

subset of relevant dataf l k
o , k51, . . . ,K that it was our goal

to detect.

Sketch of the algorithm

Let us start by recalling that the vectoru f̃ o& is obtained
from the data vectoru f o& through Eq.~21! and the vectors
ua i&, i 51, . . . ,M , as given in Eq.~16!. Beginning with
uD f &5u f̃ o& and the inner productŝa i u f̃ o&, i 51, . . . ,M , the
procedure evolves as follows.

~i! Initially set k51, uai&5ua i&, di5^a i ua i&, i
51, . . . ,M , and l 1 equal to the indexi for which ei

5u^a i u f̃ o&u2/di adopts the largest value asi ranges from 1 to
M. Assignuc&5ua l 1

&, q5dl 1
, anduuuD f &uu25uuuD f &uu22el 1

.
~ii ! For i 51, . . . ,M compute the following:

uai&5uai&2
uc&^cua i&

q
,

bi5^ai u f̃ o&,

di5di2
u^cua i&u2

q
,

if ubi u50, ei50 otherwise ei5ubi u2/di .

~iii ! Increasek to k11 and setl k equal to the indexi for
which ei takes the largest value asi ranges from 1 toM.
Assign uc&5ual k

&, q5dl k
, anduuuD f &uu25uuuD f &uu22el k

.
~iv! Repeat steps~ii !, and ~iii !. The algorithm is to be

stopped when some convergence criterion is reached,
when

uuD f uu2<d2, ~33!

whered2 is a square norm of the data error.
Let us assume that the given convergence criterion

reached at iterationK. At such stage the above algorithm h
selectedK indexesl k , k51, . . . ,K, and we are in a position
to compute the inverse of operatorF̂†F̂ ~by simply evaluat-
ing the inverse of its matrix representation^ l nuF̂†F̂u l k&
5^a l n

ua l k
&, n51, . . . ,K, k51, . . . ,K). Hence, the

Lagrange multiplier vector minimizing the distance to t
available data is given by

ul&5~ F̂†F̂ !21F̂†u f̃ o&, ~34!

and the correspondingup1/2& distribution by Eq.~13!.
Finally we would like to stress that, according to the pr

posed scheme, the entire set of pieces of datau f o&PRM can
be ‘‘encoded’’ into a vector of smaller dimension, name
the Lagrange multiplier vectorul&PRK. The reconstruction,
interpolation, and extrapolation of the data are achieved
3-5
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‘‘predictions’’ of the up1/2& distribution. Indeed, the predicte
values for the observed data are given by

u f p&5Âup1/2&. ~35!

On the other hand, ifxn is a random variable representing
physical quantity that is not contained in our original da
space, then the prediction of such a variable is to be c
puted as

x̄5 (
n51

N

pn
1/2xn . ~36!

V. NUMERICAL SIMULATION

We illustrate in this section the approach advanced in
present communication with a well-known example th
deals with a highly unstable inverse problem, even for v
small perturbations of the data.

The spacesR N andR M are chosen to be of dimension 5
and 100, respectively. The matrix elements of the operatoÂ
are given by the exponential decays

^ i uÂun&5 f i ,n5exp~2nxi !, xi50.01i ,

i 51, . . .,100, n51, . . .,50. ~37!

The ‘‘true’’ data are generated as follows:

f i5 (
n51

50

pnf i ,n , i 51, . . .,100 ~38!

with f i ,n as in Eq.~37! andpn given by

pn5

expS 2
@ ln~n!2 ln~7!#2

4ln~2! D
(
n51

50

expS 2
@ ln~n!2 ln~7!#2

4ln~2! D , n51, . . .,50.

~39!

The ‘‘observed’’ data are simulated by distorting each dataf i
with a 0.1% gaussian error.

In Fig. 1, the solid line represents the exact distributionpn
given in Eq.~39!. The dotted curve corresponds to the so
tion pn

1/2 that one obtains from five different realizations
the observed data. In each of them our algorithm selects
relevant data pointsxl k

, k51, . . . ,4 corresponding to the

indexesl k , k51, . . . ,4, aslisted below
.

A

J.

01111
-

e
t
y

-

ur

1 69 2 35

1 68 2 19

1 70 2 27

1 69 2 24

1 69 2 30

Notice that the selection of twoconsecutivepoints~1 and 2!
is effected in all cases.

The convergence criterion~33! is seen to yield stability of
the approach against different realizations of data.

VI. CONCLUSIONS

A method for data subset selection, which is based on
q5 1

2 nonextensive maximum information measure form
ism, has been advanced.

The method proceeds iteratively by selecting, at each s
a measure endowed with information not contained in
previously selected measures. The selection is made opt
in the following sense: at each iteration the selected d
gives rise to aq5 1

2 distribution that effects predictions tha
minimize the Euclidean distance to all the available data

Information relative to the question concerning justwhich
the relevant data are, is to be stored as a set of inde
~integer numbers!. Information on the data themselves
stored as parameters of the model~Lagrange multipliers!.
Out of this information one can reconstruct, interpolate, a
extrapolate the original data via aq5 1

2 nonextensive maxi-
mum information measure distribution.

FIG. 1. Exact distribution~solid line!, as given by Eq.~39!,
versus results that we obtain for five different realizations of
observed data~dotted curves!.
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